Electric Vehicle Integrated Low Carbon Optimal Dispatch for New Power Systems

As a researcher addressing the dual challenges of carbon neutrality and renewable energy integration, I propose a novel two-stage day-ahead-intraday optimal dispatch framework for power systems incorporating electric vehicles (EVs). This methodology leverages EVs as flexible resources to balance supply-demand uncertainties while minimizing carbon emissions and operational costs.

1. Uncertainty Mitigation via SSA-CNN-LSTM Forecasting

Electric vehicle charging patterns exacerbate the volatility of modern grids with high renewable penetration. My solution employs a Sparrow Search Algorithm (SSA)-optimized Convolutional Long Short-Term Memory (CNN-LSTM) network for high-accuracy source-load forecasting:

Forecasting Workflow:

  1. Data Preprocessing: Normalize historical PV, wind, and load data.
  2. SSA Parameter Optimization:
    • Population size: 50, iterations: 10, safety threshold: 0.8.
    • Fitness function: CNN-LSTM neuron count & initial learning rate.
  3. Feature Extraction: CNN layers extract spatial features; LSTM processes temporal sequences.

Mathematical Formulation:

  • SSA Position Update:Xijd+1={Xijd⋅exp⁡(−dα⋅itermax)R2<STXijd+Q⋅LR2≥STXijd+1​={Xijd​⋅exp(−αitermax​d​)Xijd​+QLR2​<STR2​≥ST​where R2R2​ = alert threshold, QQ = random normal number, LL = unit matrix.
  • Forecast Evaluation Metrics:MAPE=1n∑i=1n∣Li−Li′Li∣×100%,RMSE=1n∑i=1n(Li−Li′)2MAPE=n1​i=1∑n​​LiLi​−Li′​​​×100%,RMSE=n1​i=1∑n​(Li​−Li′​)2​

Table 1: Forecasting Performance Comparison

ModelMAPE (%)RMSE (MW)
BP Neural Network5.270.73
CNN-LSTM4.220.70
SSA-CNN-LSTM (Proposed)2.310.37

The SSA-CNN-LSTM reduces MAPE by 60% and RMSE by 49% versus CNN-LSTM, critically enhancing dispatch reliability amid electric vehicle variability.

2. EV Charging Mode Classification

Electric vehicles are categorized by demand response (DR) flexibility to maximize grid support:

A. Non-Adjustable Mode (50% of fleet):

  • Constraints:Pk,t=PchEV,Sk,t=Sk,t−Δt+Ich,k,tEVηchPk,tEVΔtSkPk,t​=PchEV​,Sk,t​=Sk,t−Δt​+Ich,k,tEV​Skηch​Pk,tEV​Δt
  • Applies to taxis/short-trip EVs requiring fixed charging.

B. Power-Adjustable Mode (35%):

  • Constraints:0≤Pk,t≤PchEV,0.95Skmax≤Sk,out≤Skmax0≤Pk,t​≤PchEV​,0.95Skmax​≤Sk,out​≤Skmax​
  • Minimizes costs via price-based DR (PDR).

C. V2G Mode (15%):

  • Constraints:Sk,t=Sk,t−Δt+Ich,k,tEVηchPk,tEVΔtSk−Idis,k,tEVPk,tEVΔtηdisSkSk,t​=Sk,t−Δt​+Ich,k,tEV​Skηch​Pk,tEV​Δt​−Idis,k,tEV​ηdis​SkPk,tEV​Δt
  • Engages in incentive-based DR (IDR) for bidirectional energy trading.

DR Participation Limits:

  • Day-ahead: ≤30% (Mode B), ≤25% (Mode C).
  • Intraday: ≤20% (Mode B/C).

3. Two-Stage Dispatch Framework

3.1 Day-Ahead Scheduling

Objective Functions:

  • Economic:min⁡F1da=∑t=1T1[∑i=1N(aiPGi,t2+biPGi,t+ci)+Ct+KW(PW,tpre−PW,t)+KR(PR,tpre−PR,t)]minF1da​=t=1∑T1​​[i=1∑N​(aiPGi​,t2​+biPGi​,t​+ci​)+Ct​+KW​(PW,tpre​−PW,t​)+KR​(PR,tpre​−PR,t​)]
  • Environmental:min⁡F2da=∑t=1T1∑i=1N(αiPGi,t2+βiPGi,t+γi)minF2da​=t=1∑T1​​i=1∑N​(αiPGi​,t2​+βiPGi​,t​+γi​)
  • Weighted Total:Fda=ω1F1da+ω2F2da(ω1=ω2=0.5)Fda=ω1​F1da​+ω2​F2da​(ω1​=ω2​=0.5)

Constraints:

  • Power balance, ramp rates, reserves (Eq. 19–26 in source).

3.2 Intraday Rolling Optimization

Objective Functions:

  • Adjusts day-ahead plan using 15-min intervals:min⁡Fid=ω3F1id+ω4F2id(ω3=ω4=0.5)minFid=ω3​F1id​+ω4​F2id​(ω3​=ω4​=0.5)
  • Updates forecasts and EV responses every 4 hours.

4. Staircase Carbon Trading Mechanism

Carbon costs escalate with emissions to incentivize low-carbon operation:Ct={Kc(Et−Eqt)Et≤EqtKcv+(1+σ)Kc(Et−Eqt−v)Eqt+v<Et≤Eqt+2v⋮(6+4σ)Kcv+(1+4σ)Kc(Et−Eqt−4v)Et>Eqt+4vCt​=⎩⎨⎧​Kc​(Et​−Eqt​)Kcv+(1+σ)Kc​(Et​−Eqt​−v)⋮(6+4σ)Kcv+(1+4σ)Kc​(Et​−Eqt​−4v)​Et​≤Eqt​Eqt​+v<Et​≤Eqt​+2vEt​>Eqt​+4v

where Et=∑δiPGi,tEt​=∑δiPGi​,t​, v=λEqtv=λEqt​, σσ = price increment.

5. Improved MOGWO Solver

Enhanced Multi-Objective Grey Wolf Optimizer addresses local optima traps:

  • Exponential Decay:a=2−(kitermax)3×2a=2−(itermax​k​)3×2
  • Elite Retention: Replace poorest 18% wolves per iteration.

Table 2: Algorithm Performance Comparison

Solution TypeTraditional MOGWOImproved MOGWO
Economic Optimal Cost ($×10^3$)553.23551.29
Emission Optimal (lb)6,844.56,835.6
Compromise Emission (lb)6,952.76,937.1

6. Case Study & Results

Simulations used 20 MW PV, 30 MW wind, 20,000 EVs with parameters:

  • Daily mileage: N(3.2,0.882)N(3.2,0.882) km.
  • Charging times: Start ~ N(17.6,3.42)N(17.6,3.42), End ~ N(8.92,3.242)N(8.92,3.242).

Table 3: Day-Ahead Dispatch Results (4 Scenarios)

MetricScenario 1Scenario 4Reduction
Total Cost ($)64,43458,92910.3%
Emissions (lb)7,9327,12610.9%
PV Curtailment Rate (%)6.132.843.29%
Wind Curtailment Rate (%)6.380.376.01%

Key Findings:

  • Scenario 4 (EV-DR + carbon trading) outperforms others:
    • Intraday costs reduced by 10.3% vs Scenario 1.
    • Emissions decreased 10.9% while boosting renewable consumption 4.2%.
  • EV Flexibility: Mode C EVs provided 187 lb emission reduction via V2G.

7. Conclusion

This work establishes an integrated framework for electric vehicle participation in low-carbon power systems:

  1. SSA-CNN-LSTM elevates forecasting accuracy (MAPE: 2.31%), mitigating source-load uncertainties.
  2. EV Classification enables tailored DR strategies, reducing peak loads and emissions.
  3. Staircase Carbon Pricing cuts coal dependency, lowering emissions 10.9%.
  4. Improved MOGWO achieves superior convergence and solution diversity.

The proposed system cuts operational costs by 10.3% and emissions by 10.9%, proving electric vehicles are pivotal for grid decarbonization. Future work will extend this framework to real-time scheduling scales.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top