Understanding Distribution Network Congestion Management Using Dynamic Tariffs and Electric Vehicle Spatiotemporal Flexibility Under Uncertainty

This research addresses the critical challenge of distribution network congestion exacerbated by the large-scale integration of electric vehicles (EVs) and renewable energy sources. Unlike conventional loads, electric vehicle loads exhibit unique spatiotemporal flexibility, enabling strategic charging/discharging scheduling to alleviate grid stress. However, uncertainties in distributed generation (e.g., wind/PV) and load patterns complicate congestion management. Here, I present a robust optimization framework leveraging dynamic tariffs (DTs) to coordinate electric vehicle behavior across coupled transportation-distribution networks, ensuring reliable grid operation under worst-case uncertainty scenarios.

1. Integrated Modeling of Transportation and Distribution Networks

1.1 Linear Dynamic Traffic Assignment for EV Flows

The transportation network is modeled as a graph G={A,N}G={A,N}, where AA denotes road segments (arcs) and NN represents nodes (junctions/FCSs). For EV travel demand between origin-destination (O-D) pair ii:fm,tod=∑d∈Diuad,j,tin,∀t,∀mfm,tod​=dDi​∑​uad​,j,tin​,∀t,∀m∑tuad,j,tin=∑tvad,j,tout,∀j∈Pit∑​uad​,j,tin​=t∑​vad​,j,tout​,∀jPi

where fm,todfm,tod​ is the total EV volume for O-D pair ii managed by aggregator mm at time tt, uad,j,tinuad​,j,tin​ and vad,j,toutvad​,j,tout​ denote EVs entering/exiting path jj, and DiDi​ is the set of paths for O-D pair ii.

Table 1: Key Parameters for Transportation Network Road Segments

Road SegmentEV Capacity (NaNa​)Travel Time (τaτa​, h)
T1–T22005
T2–T5792
T5–T6822

Node-Specific Dynamics:

  • Ordinary Nodes:vj,taprev=uj,tanext,∀n∈Nordvj,taprev​​=uj,tanext​​,∀nNord​
  • FCS Nodes: EVs choose charging (uj,tcduj,tcd​), discharging (uj,tdcuj,tdc​), or bypassing (uj,tfreeuj,tfree​):vj,ta+=uj,tcd+uj,tfreevj,ta+​​=uj,tcd​+uj,tfree​uj,ta−=vj,tcd+uj,tfreeuj,ta−​​=vj,tcd​+uj,tfree​Queue dynamics at FCS yy:xy,j,tqueue−xy,j,t−1queue=uj,tcd−vj,tcd,∀j∈Pyxy,j,tqueue​−xy,j,t−1queue​=uj,tcd​−vj,tcd​,∀jPy

1.2 State-of-Charge (SOC) Dynamics

EV SOC evolves based on travel and charging activities:

  • On Roads:ea,j,tsoc−ea,j,t−1soc=eu,j,t−τain−ev,j,tout−catr⋅ua,j,t−τa,∀a,∀jea,j,tsoc​−ea,j,t−1soc​=eu,j,tτa​in​−ev,j,tout​−catr​⋅ua,j,tτa​​,∀a,∀jwhere catrcatr​ is energy consumption per km, and τaτa​ is travel delay.
  • At FCSs:ey,j,tsoc,cd−ey,j,t−1soc,cd=eu,j,tin,cd−ev,j,tout,cd+∑l∈LyplηΔtxl,j,tcdey,j,tsoc,cd​−ey,j,t−1soc,cd​=eu,j,tin,cd​−ev,j,tout,cd​+lLy​∑​plηΔtxl,j,tcd​with plpl​ = charging/discharging power, ηη = efficiency.

Table 2: EV Travel Demand Parameters

OriginDestinationEV Volume (fi,todfi,tod​)Total Initial SOC (ei,tsocei,tsoc​)
T9T15,0002,000
T4T105,0002,000

2. Robust Congestion Management Model

2.1 Uncertainty Modeling

Wind/PV generation (Pr,tWT,Pr,tPVPr,tWT​,Pr,tPV​) and load (Pr,tConPr,tCon​) uncertainties are bounded within intervals:ΔPr,tWT∈[−ξrWT,ξrWT],ΔPr,tPV∈[−ξrPV,ξrPV],ΔPr,tCon∈[−ξrCon,ξrCon]ΔPr,tWT​∈[−ξrWT​,ξrWT​],ΔPr,tPV​∈[−ξrPV​,ξrPV​],ΔPr,tCon​∈[−ξrCon​,ξrCon​]

A robust control parameter Γr∈[0,1]Γr​∈[0,1] adjusts conservatism:∣Pr,t∗−P‾r,t∗ξr∗∣≤Γr∗​ξr∗​Pr,t∗​−Pr,t∗​​​≤Γr∗​

2.2 Distribution Network Constraints

Linearized AC power flow equations govern the distribution grid:∑s∈c(r)Ps,tl+Pr,tInj−∑k∈c(r)Pk,tl=Pr,tLoadsc(r)∑​Ps,tl​+Pr,tInj​−kc(r)∑​Pk,tl​=Pr,tLoad​Vr=Vs−Ps,tlRl+Qs,tlXlV0,∀lVr​=Vs​−V0​Ps,tlRl​+Qs,tlXl​​,∀l

Robust reformulation for worst-case uncertainty (min wind/PV, max load):∑s∈c(r)Ps,tl+(P‾r,tWT−ΓrWTξrWT)+(P‾r,tPV−ΓrPVξrPV)−∑k∈c(r)Pk,tl=(P‾r,tCon+ΓrConξrCon)+Pr,tEVsc(r)∑​Ps,tl​+(Pr,tWT​−ΓrWT​ξrWT​)+(Pr,tPV​−ΓrPV​ξrPV​)−kc(r)∑​Pk,tl​=(Pr,tCon​+ΓrCon​ξrCon​)+Pr,tEV​

Constraints include line flow and voltage limits:−flmax≤Plt≤flmax,Vmin≤Vr≤Vmax−flmax​≤Plt​≤flmax​,Vmin≤Vr​≤Vmax

Table 3: Distribution Line Flow Limits

LineFlow Limit (kW)
E5–F1 (L1)800
E5–F2 (L2)300
E5–F3 (L3)750
E5–F4 (L4)350

2.3 Dynamic Tariff (DT) Formulation

The dynamic tariff RtRt​ reflects congestion severity, derived from dual variables (λt+,λt−λt+​,λt−​, γt+,γt−γt+​,γt−​) of line flow/voltage constraints:Rt=(λt+−λt−)+(γt+−γt−)Rt​=(λt+​−λt−​)+(γt+​−γt−​)

DSO’s Objective: Minimize total EV travel time + charging cost:min⁡∑m(Cmtime+Cmenergy)minm∑​(Cmtime​+Cmenergy​)Cmenergy=(ct+β∑mpm,t)∑mpm,tCmenergy​=(ct​+βm∑​pm,t​)m∑​pm,t

EVA’s Response (after receiving RtRt​):min⁡(Cmtime+(ct+β⋅pm,t+Rt)⋅pm,t)min(Cmtime​+(ct​+βpm,t​+Rt​)⋅pm,t​)


3. Simulation Analysis

3.1 Deterministic vs. Robust Management

  • Deterministic Case: Without uncertainty, DTs manage congestion (Fig. 5).
    *Table 4: DT Values Under Deterministic Strategy ($/kWh)*TimeF2F310:000.39730.340712:000.37100.323218:000.23780.2024
  • With 10% Uncertainty: Deterministic strategy fails (Fig. 9), lines exceed limits.

3.2 Robust Optimization Results

Under worst-case uncertainty (10% fluctuation):

  • Higher DTs (e.g., 10:00 at F2: $0.7738/kWh vs. $0.3973 deterministically).
  • EVs shift paths/charging: 571.7 EVs from Path 3 to Paths 1–2 for O-D1; 396.5 EVs from Path 1 to Paths 2–3 for O-D2.
  • Congestion avoided despite extreme fluctuations (Fig. 10).

*Table 5: Robust DT Values Under 10% Uncertainty ($/kWh)*

TimeF2F3
10:000.77380.6521
12:000.74750.6346
18:000.61430.5137

3.3 Impact of Robustness Parameter ΓΓ

Increasing ΓΓ enhances robustness at higher costs:

UncertaintyΓ=0Γ=0Γ=0.5Γ=0.5Γ=1.0Γ=1.0
5% fluctuation$4,537.4$5,102.1$5,692.8
10% fluctuation$4,537.4$5,421.3$5,846.2

4. Conclusion

This work establishes a robust optimization-based congestion management framework for distribution networks with high electric vehicle penetration. Key contributions include:

  1. Linearized EV Flow and SOC Models: Captures spatiotemporal flexibility of electric vehicle mobility and charging.
  2. Dynamic Tariff Mechanism: DTs derived from dual variables provide real-time congestion signals, incentivizing EVs to shift loads.
  3. Uncertainty Handling: Box uncertainty sets and adjustable ΓΓ balance robustness and optimality.
  4. Decentralized Coordination: DSO computes DTs; EVAs optimize locally, ensuring scalability.

Simulations confirm that dynamic tariffs effectively mitigate congestion under 10% renewable/load fluctuations by leveraging electric vehicle flexibility. Higher ΓΓ values increase system robustness at the expense of higher EV operating costs, providing a tunable trade-off for grid operators. Future work will integrate stochastic optimization to reduce conservatism.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top